top of page


Discover the potential of data and AI

Spatiotemporal Database

We are building a spatiotemporal database into a small computer, allowing users to search for data based on spatial and time information.


It does not need to be connected to the Internet, just connect it to the place where you store data such as NAS, it can be implemented on the intranet to ensure that data will not leak out.


Now it is 90% developed and will be released soon.

Spatiotemporal query

Interface of spatiotemporal data query

GAN colorization.png

GAN Colorization on grayscale images

Historical aerial photographs provide crucial information for efficient long-term environmental monitoring and change detection.


The contribution of color, texture, and lightness features for land monitoring is well known.


However, the early images were mainly grayscale. Therefore, we use Generative Adversarial Network (GAN) technology for automated colorization, then we can get deep insight from historical aerial photographs.

Transforming the 3D Model to HD Map base map

We use Lidar to scan roads, then generate 3D models to draw vector maps such as lane, road edge, whiteline, roadmarks etc. to form an HD Map, which will be used by unmanned systems in the future.

HD map
GAN removal.png

GAN Object Removal

When using 2D images for 3D modeling, the 3D model cannot show the real road conditions because of the cars on the road. In order to solve this problem, in the process of preprocessing, the cars must be removed in advance.


Therefore, we use AI to identify the position of cars and remove them, then use GAN to restore the ground image. Going through this preprocessing before doing the 3D modeling, the results are very good. Here are the examples.

Let Us Help You with Geospatial Technology

bottom of page